

ISPMS of SB RAS

ЗD СЕЛЕКТИВНОЕ ЛАЗЕРНОЕ СПЛАВЛЕНИЕ НИЗКОМОДУЛЬНОГО БИОИНЕРТНОГО СПЛАВА ТИТАН-НИОБИЙ для МЕДИЦИНСКИХ ПРИЛОЖЕНИЙ

Ю.П.Шаркеев

Институт физики прочности и материаловедения СО РАН Национальный исследовательский Томский политехнический университет (ЮТИ, ИФВТ)

Томск-2016

АННОТАЦИЯ

Изучены фазовый состав и микроструктура сплава Ti-Nb, полученного методом селективного лазерного сплавления (СЛС) из композитного порошка титана и ниобия. Сформированный в результате СЛС сплав Ti-Nb в виде монослоя имеет зоны мелкозернистой и среднезернистой структуры с гомогенным элементным составом в пределах 36-38 мас. % Nb. Фазовое состояние сплава соответствует матричной фазе β -твердого раствора (размеры зерен – 5-7 мкм) и неравновесной мартенситной α"-фазе (размеры зерен – 0,1-0,7 мкм). Зерна α"локализованы по границам зерен *β*-фазы и имеют фазы пониженное содержание ниобия. Микротвердость сплава изменяется в пределах 4200-5500 МПа.

Ключевые слова: селективное лазерное сплавление, сплав Ti-Nb, микроструктура, фазовый состав.

Любой элемент костной системы может быть заменен имплантатом!

Four groups of biomaterials

Bulk biomaterials and biocoatings 1. Metals and alloys

2. Bioceramic materials

3. Biopolymers

4. Carbon

All groups of biomaterials are intensively developed

Bioinert metals

Low modulus β-type titanium alloys for biomedical applications β-type titanium alloys

```
Ti-13Nb-13Zr ASTM F 1713
Ti-12Mo-6Zr-2Fe (TMZF) ASTM F 1813
Ti-12Mo-5Zr-5Sn
Ti-15Mo ASTM F 2066
Ti–16Nb–10Hf (Tiadyne 1610)
Ti-15Mo-2.8Nb-0.2Si
Ti-15Mo-5Zr-3Al
Ti-30Ta
Ti-45Nb AMS 4982
Ti-35Zr-10Nb
Ti-35Nb-7Zr-5Ta (TNZT)
Ti-29Nb-13Ta-4.6Zr (TNTZ)
Ti-35Nb-4Sn
Ti-50Ta
```

Ti-8Fe-8Ta Ti-8Fe-8Ta-4Zr Ti-35Nb-2Ta-3Zr Ti-22.5Nb-0.7Zr-2Ta Ti-23Nb-0.7Ta-2.0Zr-1.2O Ti-28Nb-13Zr-0.5Fe (TNZF) Ti-24Nb-4Zr-7.9Sn (Ti2448) Ti-7.5MoTi-12Mo-3Nb Ti-12Mo-5Ta Ti-12Cr Ti = 30Zr = 7MoTi-30Zr-3Mo-3Cr TiNi

Development of new metallic alloys for biomedical applications. Mitsuo Niinomi ↑, Masaaki Nakai, Junko Hieda. Acta Biomaterialia. 8 (2012), 3888 - 3903

The **Ti-Nb** alloys with a relatively high Nb content are perspective alloys for medical applications

Ti-40 mass%Nb alloy

A Ti-Nb alloy with a relatively high Nb content (above 36 mass%) is preferable for use as medical implants and reducing stress shielding effect. The Ti-40 mass%Nb alloy has an elastic modulus of some 57 GPa, a reasonably high ductility (13% elongation), a moderate tensile strength (600 MPa) and essentially a ductile fracture nature.

Composition/Phase Structure and Properties of Titanium-Niobium Alloys. Yen-Huei Hon, Jian-Yih Wang, Yung-Ning Pan. Materials Transactions, Vol. 44, No. 11 (2003) pp. 2384 – 2390.

Микроструктура титанаТі-40 мас.%Nb

Ультрамелкозернистое состояние

Titanium – 40 mas % niobium alloy в УМЗ состоянии

 $H_{\mu} = 2800 \text{ MPa}$

Рентгеновская дифрактограмма сплава Ti-40 мас.%Nb

I Всероссийская научно-практическая конференция, 8 апреля 2016, Нижний Новгород

Юрий Шаркеев

10

Свойства титана и ниобия

	Титан	Ниобий
Температура плавления, °С	1668	2468
Плотность, г/см ³	4,51	8,57
Теплопроводность, Вт/(м·К)	21,9	53,7
Теплоемкость, Дж/(К·кг)	531	263
Температура кипения, °С	3287	4742
Радиус атома, пм	147	146

РЭМ

РЭМ изображение композитного порошка титана и ниобия

I Всероссийская научно-практическая конференция, 8 апреля 2016, Нижний Новгород

Юрий Шаркеев

УСТАНОВКА ВАРИСКАФ-100МВ для СЕЛЕКТИВНОГО ЛАЗЕРНОГО СПЛАВЛЕНИЯ (ЮТИ НИ ТПУ)

1 – узел перемещения лазера в плоскости Х-Ү«летающая» оптика;
 2 – вакуумная камера; 3 – система откачки; 4 – иттербиевый лазер;
 5 – блок управления установкой; 6 – ЧПУ

СХЕМА УСТАНОВКА ВАРИСКАФ-100МВ

1 – персональный компьютер, 2 – иттербиевый волоконный лазер, 3 – узел перемещения лазера в плоскости Х-Ү, 4 – коллиматор, 5 – ПИД-регулятор температуры нагрева подложки и ИК-нагревателя, 6 – узел перемещения стола по оси Z, 7 – устройство распределения порошка, 8 – система ЧПУ, 9 – вакуумная камера, 10 – рабочее окно

УСТАНОВКА ВАРИСКАФ-100МВ

УСТАНОВКА ВАРИСКАФ-100МВ

УСТАНОВКА "ЛУЧ" (ИФВТ НИ ТПУ)

1, 1' – Волоконный лазер; 2, 2' – коллиматор; 3 – сканатор; 4 – металлический корпус камеры; 5 – оптическое окно в камеру; 6 – фокусируемое излучение; 7 – нож ракеля; 8 – подъемноопускающиеся платформы; 9 – порошок; 10 – деталь построения; 11 – подача инертного газа; 12 – газовый поток; 13 – отвод продуктов и газа из камеры; 14 – бункер для излишков порошка

МОНОСЛОЙНЫЕ ОБРАЗЦЫ СПЛАВА Ті – 40 мас.% Nb, ПОЛУЧЕННЫЕ МЕТОДОМ СЕЛЕКТИВНОГО ЛАЗЕРНОГО СПЛАВЛЕНИЯ КОМПОЗИТНОГО ПОРОШКА ТИТАНА и НИОБИЯ

МНОГОСЛОЙНЫЕ ОБРАЗЦЫ СПЛАВА Ті – 40 мас.% Nb

I Всероссийская научно-практическая конференция, 8 апреля 2016, Нижний Новгород

Юрий Шаркеев

ОБЪЕМНЫЙ ОБРАЗЕЦ СПЛАВА Ті – 40 мас.% Nb

РЭМ ИЗОБРАЖЕНИЕ ИЗЛОМА

РЭМ ИЗОБРАЖЕНИЕ ИЗЛОМА

РЭМ-изображение излома (а) и распределения Ті (б) и Nb (в)

I Всероссийская научно-практическая конференция, 8 апреля 2016, Нижний Новгород

Юрий Шаркеев

ОПТИЧЕСКАЯ МЕТАЛЛОГРАФИЯ и ДИФРАКТОГРАММА СПЛАВА

Оптическое изображение микроструктуры (а) и фрагмент рентгеновской дифрактограммы (б)

МИКРОСТРУКТУРА СПЛАВА

Электронномикроскопические светлопольные с соответствующими микродифракциями изображения микроструктуры образца (а, в) и соответствующие схемы идентификации фаз (б, г)

I Всероссийская научно-практическая конференция, 8 апреля 2016, Нижний Новгород

Юрий Шаркеев

ЗАКЛЮЧЕНИЕ

Сплав Ti-Nb в виде монослоя с гомогенным распределением титана и ниобия получен методом СЛС из композитного порошка титана и ниобия. Монослой состоит из верхней зоны с мелкозернистой структурой и нижележащей зоны со среднезернистой структурой. Среднее содержание ниобия в сплаве в продольном и поперечном сечениях монослоя изменяется в небольших пределах 36-38 мас.%. Сплав Ti-Nb имеет двухфазное состояние, а именно, матричную фазу β-ОЦК твердого раствора титана и ниобия (размеры зерен – 5-7 мкм) и неравновесную мартенситную α'' -фазу (размеры зерен – 0,1-0,7 мкм), локализованную по границам зерен β-фазы. Зерна β-фазы имеют повышенное содержание ниобия (до 45 мас.%), тогда как в зернах α"фазы наблюдается пониженное содержание ниобия (до 20 мас.%). Формирование выраженных зон по сечению образца с мелкозернистой и среднезернистой структурой связано с различными температурновременными условиями кристаллизации и охлаждения слоя, расплавленного в процессе послойного лазерного сплавления.

Юрий Шаркеев

ДЕНТАЛЬНЫЕ ВИНТОВЫЕ ВНУТРИКОСТНЫЕ ИМПЛАНТАТЫ

Разработанные конструкции дентальных винтовых внутрикостных имплантатов из наноструктурного титана, в том числе с кальцийфосфатными покрытиями, на применение которых в настоящее время получено регистрационного удостоверение Росздравнадзора.

Thanks for attention!

Работа выполнена в ИФПМ СО РАН, НИ ТПУ (ЮТИ, ИФВТ) при финансовой поддержке РНФ, грант 15-19-00191

